Big Data in the Insurance Market Intelligence and Forecast by 2030

ResearchMoz presents professional and in-depth study of "Big Data in the Insurance Industry: 2018 - 2030 - Opportunities, Challenges, Strategies & Forecasts".

“Big Data” originally emerged as a term to describe datasets whose size is beyond the ability of traditional databases to capture, store, manage and analyze. However, the scope of the term has significantly expanded over the years. Big Data not only refers to the data itself but also a set of technologies that capture, store, manage and analyze large and variable collections of data, to solve complex problems.

Get PDF for more Professional and Technical insights @ https://www.researchmoz.us/enquiry.php?type=S&repid=1867484

Amid the proliferation of real-time and historical data from sources such as connected devices, web, social media, sensors, log files and transactional applications, Big Data is rapidly gaining traction from a diverse range of vertical sectors. The insurance industry is no exception to this trend, where Big Data has found a host of applications ranging from targeted marketing and personalized products to usage-based insurance, efficient claims processing, proactive fraud detection and beyond.

SNS Telecom & IT estimates that Big Data investments in the insurance industry will account for more than $2.4 Billion in 2018 alone. Led by a plethora of business opportunities for insurers, reinsurers, insurance brokers, InsurTech specialists and other stakeholders, these investments are further expected to grow at a CAGR of approximately 14% over the next three years.

The “Big Data in the Insurance Industry: 2018 – 2030 – Opportunities, Challenges, Strategies & Forecasts” report presents an in-depth assessment of Big Data in the insurance industry including key market drivers, challenges, investment potential, application areas, use cases, future roadmap, value chain, case studies, vendor profiles and strategies. The report also presents market size forecasts for Big Data hardware, software and professional services investments from 2018 through to 2030. The forecasts are segmented for 8 horizontal submarkets, 8 application areas, 9 use cases, 6 regions and 35 countries.

The report comes with an associated Excel datasheet suite covering quantitative data from all numeric forecasts presented in the report.

Topics Covered

The report covers the following topics:

    Big Data ecosystem
    Market drivers and barriers
    Enabling technologies, standardization and regulatory initiatives
    Big Data analytics and implementation models
    Business case, application areas and use cases in the insurance industry
    20 case studies of Big Data investments by insurers, reinsurers, InsurTech specialists and other stakeholders in the insurance industry
    Future roadmap and value chain
    Profiles and strategies of over 270 leading and emerging Big Data ecosystem players
    Strategic recommendations for Big Data vendors and insurance industry stakeholders
    Market analysis and forecasts from 2018 till 2030

View Complete TOC with tables & Figures @ https://www.researchmoz.us/big-data-in-the-insurance-industry-2018-2030-opportunities-challenges-strategies-forecasts-report.html/toc

Forecast Segmentation

Market forecasts are provided for each of the following submarkets and their subcategories:

Hardware, Software & Professional Services

    Hardware
    Software
    Professional Services

Horizontal Submarkets

    Storage & Compute Infrastructure
    Networking Infrastructure
    Hadoop & Infrastructure Software
    SQL
    NoSQL
    Analytic Platforms & Applications
    Cloud Platforms
    Professional Services

Application Areas

    Auto Insurance
    Property & Casualty Insurance
    Life Insurance
    Health Insurance
    Multi-Line Insurance
    Other Forms of Insurance
    Reinsurance
    Insurance Broking

Use Cases

    Personalized & Targeted Marketing
    Customer Service & Experience
    Product Innovation & Development
    Risk Awareness & Control
    Policy Administration, Pricing & Underwriting
    Claims Processing & Management
    Fraud Detection & Prevention
    Usage & Analytics-Based Insurance
    Other Use Cases

Regional Markets

    Asia Pacific
    Eastern Europe
    Latin & Central America
    Middle East & Africa
    North America
    Western Europe

Country Markets

Argentina, Australia, Brazil, Canada, China, Czech Republic, Denmark, Finland, France, Germany,  India, Indonesia, Israel, Italy, Japan, Malaysia, Mexico, Netherlands, Norway, Pakistan, Philippines, Poland, Qatar, Russia, Saudi Arabia, Singapore, South Africa, South Korea, Spain, Sweden, Taiwan, Thailand, UAE, UK,  USA

Key Questions Answered

The report provides answers to the following key questions:

    How big is the Big Data opportunity in the insurance industry?
    How is the market evolving by segment and region?
    What will the market size be in 2021, and at what rate will it grow?
    What trends, challenges and barriers are influencing its growth?
    Who are the key Big Data software, hardware and services vendors, and what are their strategies?
    How much are insurers, reinsurers, InsurTech specialists and other stakeholders investing in Big Data?
    What opportunities exist for Big Data analytics in the insurance industry?
    Which countries, application areas and use cases will see the highest percentage of Big Data investments in the insurance industry?

Key Findings

The report has the following key findings:

    In 2018, Big Data vendors will pocket more than $2.4 Billion from hardware, software and professional services revenues in the insurance industry. These investments are further expected to grow at a CAGR of approximately 14% over the next three years, eventually accounting for nearly $3.6 Billion by the end of 2021.
    Through the use of Big Data technologies, insurers and other stakeholders are beginning to exploit their data assets in a number of innovative ways ranging from targeted marketing and personalized products to usage-based insurance, efficient claims processing, proactive fraud detection and beyond.
    The growing adoption of Big Data technologies has brought about an array of benefits for insurers and other stakeholders. Based on feedback from insurers worldwide, these include but are not limited to an increase in access to insurance services by more than 30%, a reduction in policy administration workload by up to 50%, prediction of large loss claims with an accuracy of nearly 80%, cost savings in claims processing and management by 40-70%, accelerated processing of non-emergency insurance claims by a staggering 90%; and improvements in fraud detection rates by as much as 60%.
    In addition, Big Data technologies are playing a pivotal role in facilitating the adoption of on-demand insurance models – particularly in auto, life and health insurance, as well as the insurance of new and underinsured risks such as cyber crime.

List of Companies Mentioned

    1010data
    Absolutdata
    Accenture
    Actian Corporation
    Adaptive Insights
    Adobe Systems
    Advizor Solutions
    Aegon
    AeroSpike
    Aetna
    AFS Technologies
    Alation
    Algorithmia
    Allianz Group
    Allstate Corporation
    Alluxio
    Alphabet
    ALTEN
    Alteryx
    AMD (Advanced Micro Devices)
    Anaconda
    Apixio
    Arcadia Data
    Arimo
    Arity
    ARM
    ASF (Apache Software Foundation)
    Atidot
    AtScale
    Attivio
    Attunity
    Automated Insights
    AVORA
    AWS (Amazon Web Services)
    AXA
    Axiomatics
    Ayasdi
    BackOffice Associates
    Basho Technologies
    BCG (Boston Consulting Group)
    Bedrock Data
    BetterWorks
    Big Panda
    BigML
    Birst
    Bitam
    Blue Medora
    BlueData Software
    BlueTalon
    BMC Software
    BOARD International
    Booz Allen Hamilton
    Boxever
    CACI International
    Cambridge Semantics
    Cape Analytics
    Capgemini
    Cazena
    Centrifuge Systems
    CenturyLink
    Chartio
    China Life Insurance Company
    Cigna
    Cisco Systems
    Civis Analytics
    ClearStory Data
    Cloudability
    Cloudera
    Cloudian
    Clustrix
    CognitiveScale
    Collibra
    Concirrus
    Concurrent Technology
    Confluent
    Contexti
    Couchbase
    Crate.io
    Cray
    CSA (Cloud Security Alliance)
    CSCC (Cloud Standards Customer Council)
    Dai-ichi Life Holdings
    Databricks
    Dataiku
    Datalytyx
    Datameer
    DataRobot
    DataStax
    Datawatch Corporation
    Datos IO
    DDN (DataDirect Networks)
    Decisyon
    Dell Technologies
    Deloitte
    Demandbase
    Denodo Technologies
    Dianomic Systems
    Digital Reasoning Systems
    Dimensional Insight
    DMG  (Data Mining Group)
    Dolphin Enterprise Solutions Corporation
    Domino Data Lab
    Domo
    Dremio
    DriveScale
    Druva
    Dundas Data Visualization
    DXC Technology
    Elastic
    Engineering Group (Engineering Ingegneria Informatica)
    EnterpriseDB Corporation
    eQ Technologic
    ERGO Group
    Ericsson
    Erwin
    EV? (Big Cloud Analytics)
    EXASOL
    EXL (ExlService Holdings)
    Facebook
    FICO (Fair Isaac Corporation)
    Figure Eight
    FogHorn Systems
    Fractal Analytics
    Franz
    Fujitsu
    Fuzzy Logix
    Gainsight
    GE (General Electric)
    Generali Group
    Glassbeam
    GNS Healthcare
    GoodData Corporation
    Google
    Grakn Labs
    Greenwave Systems
    GridGain Systems
    Guavus
    H2O.ai
    Hanse Orga Group
    HarperDB
    HCL Technologies
    Hedvig
    Hitachi Vantara
    Hortonworks
    HPE (Hewlett Packard Enterprise)
    Huawei
    HVR
    HyperScience
    HyTrust
    IBM Corporation
    iDashboards
    IDERA
    IEC (International Electrotechnical Commission)
    IEEE (Institute of Electrical and Electronics Engineers)
    Ignite Technologies
    Imanis Data
    Impetus Technologies
    INCITS (InterNational Committee for Information Technology Standards)
    Incorta
    InetSoft Technology Corporation
    InfluxData
    Infogix
    Infor
    Informatica
    Information Builders
    Infosys
    Infoworks
    Insightsoftware.com
    InsightSquared
    Intel Corporation
    Interana
    InterSystems Corporation
    ISO (International Organization for Standardization)
    ITU (International Telecommunication Union)
    Jedox
    Jethro
    Jinfonet Software
    JMDC Corporation
    Juniper Networks
    KALEAO
    Keen IO
    Kenko-Nenrei Shogaku Tanki Hoken
    Keyrus
    Kinetica
    KNIME
    Kognitio
    Kyvos Insights
    LeanXcale
    Lexalytics
    Lexmark International
    Lightbend
    Linux Foundation
    Logi Analytics
    Logical Clocks
    Longview Solutions
    Looker Data Sciences
    LucidWorks
    Luminoso Technologies
    Maana
    Manthan Software Services
    MapD Technologies
    MapR Technologies
    MariaDB Corporation
    MarkLogic Corporation
    Mathworks
    MEAG (Munich Ergo Asset Management)
    Melissa
    MemSQL
    Metric Insights
    MetroMile
    Microsoft Corporation
    MicroStrategy
    Minitab
    MongoDB
    Mu Sigma
    Munich Re
    NEC Corporation
    Neo First Life Insurance Company
    Neo4j
    NetApp
    Nimbix
    Nokia
    Noritsu Koki
    NTT Data Corporation
    Numerify
    NuoDB
    NVIDIA Corporation
    OASIS (Organization for the Advancement of Structured Information Standards)
    Objectivity
    Oblong Industries
    ODaF (Open Data Foundation)
    ODCA (Open Data Center Alliance)
    ODPi (Open Ecosystem of Big Data)
    OGC (Open Geospatial Consortium)
    OpenText Corporation
    Opera Solutions
    Optimal Plus
    Optum
    OptumLabs
    Oracle Corporation
    Oscar Health
    Palantir Technologies
    Panasonic Corporation
    Panorama Software
    Paxata
    Pepperdata
    Phocas Software
    Pivotal Software
    Prognoz
    Progress Software Corporation
    Progressive Corporation
    Provalis Research
    Pure Storage
    PwC (PricewaterhouseCoopers International)
    Pyramid Analytics
    Qlik
    Qrama/Tengu
    Quantum Corporation
    Qubole
    Rackspace
    Radius Intelligence
    RapidMiner
    Recorded Future
    Red Hat
    Redis Labs
    RedPoint Global
    Reltio
    RStudio
    Rubrik
    Ryft
    Sailthru
    Salesforce.com
    Salient Management Company
    Samsung Fire & Marine Insurance
    Samsung Group
    SAP
    SAS Institute
    ScaleOut Software
    Seagate Technology
    Sinequa
    SiSense
    Sizmek
    SnapLogic
    Snowflake Computing
    Software AG
    Splice Machine
    Splunk
    Strategy Companion Corporation
    Stratio
    Streamlio
    StreamSets
    Striim
    Sumo Logic
    Supermicro (Super Micro Computer)
    Syncsort
    SynerScope
    SYNTASA
    Tableau Software
    Talend
    Tamr
    TARGIT
    TCS (Tata Consultancy Services)
    Teradata Corporation
    Thales
    ThoughtSpot
    TIBCO Software
    Tidemark
    TM Forum
    Toshiba Corporation
    TPC (Transaction Processing Performance Council)
    Transwarp
    Trifacta
    U.S. NIST (National Institute of Standards and Technology)
    Unifi Software
    UnitedHealth Group
    Unravel Data
    VANTIQ
    Vecima Networks
    VMware
    VoltDB
    W3C (World Wide Web Consortium)
    WANdisco
    Waterline Data
    Western Digital Corporation
    WhereScape

Make An Enquiry @ https://www.researchmoz.us/enquiry.php?type=E&repid=1867484

    WiPro
    Wolfram Research
    Workday
    Xplenty
    Yellowfin BI
    Yseop
    Zendesk
    Zoomdata
    Zucchetti
    Zurich Insurance Group

For More Information Kindly Contact:

ResearchMoz
Mr. Nachiket Ghumare,
90 State Street, Albany NY, United States - 12207
Tel: +1-518-621-2074
USA-Canada Toll Free: 866-997-4948
Email: sales@researchmoz.us
Follow us on LinkedIn @ http://bit.ly/1TBmnVG
Follow me on : https://marketinfo247.wordpress.com/

Comments

Popular posts from this blog

Overview of Industrial Gas Regulator Market in U.S. Industry : Size, Share, Trends and Analysis 2017

Analysis of Exploration & Production (E&P) Software Market in Global Industry : Market Development and Overview 2017 - 2024

CNS Cluster Addiction Drug Development Pipeline Review : Market Demands, Insights, Research and Forecast 2017